Open Peer Commentaries

Why and How to Avoid Representation

Marco Bettoni
Swiss Distance University of Applied Sciences
<marco.bettoni@welenow.ch>

“La science est une langue bien faite”
– Condillac (1780)

1 At first sight Butz’s target article attracted me, principally for three reasons: an ambitious purpose (in the abstract), the extensive mentioning of attention in the conclusion (§§92–99), and a set of potentially powerful ideas, for example the importance given to the anticipatory drive (§3) and the connection between the anticipatory drive and attention (§31).

2 But later, when I began to read the article more carefully, two completely different, more formal issues attracted my attention: first the fact that Butz uses the term “representation” more than 100 times1 (but avoids “mental representations”) and then that he uses the term “brain” 80 times.

3 Since I was trying to read the paper from a radical constructivist point of view, I experienced these facts as surprising and misleading – an obstacle to my understanding that I hoped to be able to overcome by taking a closer look at the concept of representation as it is used in the paper.

4 Why should the term “representation” constitute an obstacle to a radical constructivist understanding? Although dealing in detail with this question would require a lot of investigation, the basic idea is very simple and well expressed in the following quote: “To speakers of English [the word ‘representation’] implies a reproduction, copy, or other structure that is in some way isomorphic with an original” (Glaserfeld 1995: 94).

5 With such a term it becomes, then, quite difficult, if not impossible, to keep in mind and comply with the radical constructivist principle that claims that “…what we call knowledge can be ‘constructed’ without reference to anything outside the experiential con-

6 If the brain is an anticipatory device (§3) and the mind has an anticipatory function, then the term “representation” is potentially misleading. It implies and suggests reference to real-world objects: the mind, when it interprets the term “representation” (1) forms expectations of “reference” and (2) uses those expectations for the construction of mental constructs unwaveringly conceived of as isomorphic (or covariating) with items outside the experiential confines.

7 A first interesting instance of the term “representation” appears in §1 where Butz mentions that in the brain “development and learning shape the actual implementation of inner representations.” Here “inner representation” could mean what in German is designated as “Vorstellungen,” and “implementation” could refer to neural structures and processes that embody them in the brain. To avoid “inner representations” we could say, “Development and learning shape the actual implementation of mental constructs.”

8 In §3 we find the expression, “development of … representations of the environment.” This is an example of where “representation” easily misleads because it suggests reference to real-world objects in the mentioned “environment.” Cecatto used to criticize this way of thinking as “raddoppio del percepito” (doubling of the perceived): a thing of the environment is transferred to the inside by perception so that we then have two things: one outside, the unknown thing, and one inside, the known thing (Cecatto & Zonta 1980: 41–45). The particle “of,” with its plurality of possible meanings (semantic functions, relations), further increases the chance of misunderstandings in this same direction of cognition, (tacitly) conceived of as doubling.

9 At the beginning of §8 Butz mentions the “perceived environment”. If we use this formulation to restate the expression from §3 then we could say “development of … mental constructs of the perceived environment,” if we want to focus more on the functional level and its elements (conceptual structures); alternatively, if we want to focus on the neural level, i.e., on structures and processes that embody conceptual structures2 in the brain we could say “development of … implementations of the perceived environment”.

10 From a radical constructivist point of view, this distinction between a functional level and its enabling neural (device) level, as we have seen in the previous examples, is very important in order to avoid misleading expectations. Unfortunately, the term “representation,” as used by Butz, does not support such a distinction and thus potentially misleads to confusion of the two levels.

11 Another distinction that can contribute to reducing uncertainty of interpretation in the description of complex systems such as the mind and the brain is that expressed by the terms “operation,” “operator” and “operand,” which are typical of cybernetic thinking. The term “representation,” as a “nomen actionis” (like many other words ending in English with “-ation” and in German with “-ung”), does not support this distinction because it combines two meanings in the same word: the action of representing (operation, in fieri) and the result of representing (operand, in facto).

12 Among the 111 occurrences of the term “representation” in Butz’s article, about 70 are in the form “representation of X” (or the equivalent “X representation”), where X is mostly one of the following 7 concepts: self, goal, state, bodyspace, body, object, entity.

13 In all these cases, the mentioned distinction between the functional and the device levels could be well expressed by using either “mental construct” or “mental operation” for the functional level and “implementation” for the device level (brain). Table 1 presents some examples of original sentences and, for each, two possible reformulations.
“The anticipatory drive leads to … the generation of self representations” (§4)
- …the generation of mental constructs of the self
- …the generation of implementations of the self

“.…the suitability of the inverse structures strongly depends on state and goal representations” (§24)
- …strongly depends on the mental operations of states and goals
- …strongly depends on implementations of (the operations of) states and goals

“In the motor cortex, body representations are usually posture-encoded” (§40)
- …mental operations of the body are usually posture-encoded
- …implementations of the body are usually posture-encoded

“For more elaborate object representations, more complex interactions with the object …” (§51)
- For more elaborate mental operations of the object …
- For more elaborate implementations of the object …

“.…brain modules and mechanisms that include various forms of self-representations” (§81)
- …mechanisms that include various forms of mental operations of the self
- …mechanisms that include various forms of implementations of the self

Table 1: Possible reformulations.

To determine which of the two reformulations would be more appropriate in these examples and in the whole 111 instances of “representation” in the target article would require either a deep and complex analysis of this and related texts by Butz or, even better, a collaboration with Butz himself: I would be happy to participate in such a work, if Martin Butz would be interested.

Avoiding the term “representation” would make the article much more consistent with a radical constructivist way of thinking. It would also open up unexpected opportunities for realizing the potential of some of its most interesting ideas, such as the connection between anticipatory drive and attention (§31).

Notes
1. The author uses the term “representation” 111 times (5 times in the abstract) and its root “represent-” 140 times, with the forms: represent-ation, represent-ations, to represent, represent-s, represent-ed, represent-ing, represent-able, self-represent-ations, representational (6 in the references). As a comparison, the key term “anticipatory” appears 89 times and its root “anticipat-” (like in “anticipatory”, “anticipation”, etc.) is used 114 times.
2. Conceptual structures can involve both figurative and operative elements (Glasersfeld 1995: 98): figurative elements are abstracted from sensorimotor experience; operative elements (for example conceptual relations) are constituted of attentional operations.
3. Avoiding the term “representation” would make the article much more consistent with a radical constructivist way of thinking. It would also open up unexpected opportunities for realizing the potential of some of its most interesting ideas, such as the connection between anticipatory drive and attention (§31).
4. To determine which of the two reformulations would be more appropriate in these examples and in the whole 111 instances of “representation” in the target article would require either a deep and complex analysis of this and related texts by Butz or, even better, a collaboration with Butz himself: I would be happy to participate in such a work, if Martin Butz would be interested.
5. The author argues that the ability of organisms to anticipate outcomes of actions is crucial for the construction of experiential reality and, ultimately, the generation of consciousness. His paper is a most interesting exposition of the hypothesis that the most evolved organisms have acquired an “anticipation drive” and is a detailed account of this drive’s proposed role in the development of the higher functions of the human brain. The author wisely states at the end that “how these mechanisms work together, how they maintain the continuous overall activity balance between the interacting brain areas, and how they ultimately control our individual selves and constitute our selves at the same time will still be under debate and researched for many years to come.”
6. I am not sufficiently versed in the neurophysiology of the brain to evaluate the physical plausibility of this hypotheses but there are a number of questions that a student of cognition and language can raise that may be of help in tightening the author’s proposal.
7. Those of us who have tried to expound and explain constructivism in the past have been incessantly hampered by the traditional implications inherent in the use of a natural language that was formed and developed in a climate of naive realism. It is difficult to remain aware of the fact that if someone says, “There is a squirrel,” he is actually saying that he seeing (i.e., isolating in his visual field) an item that he categorizes as “a squirrel.” Although it sounds like it, he is not talking (and cannot talk) about squirrels as though they were independent of his perceptual activity.
8. A somewhat analogous ambivalence is created for Butz by the term “code” in the variety of combinations that the author uses (“perceptual” §23, “anticipatory” §28, §32, “sensorimotor” §37, “neural” §40, “interaction” §52, “behavioral” §66, “language” §76) and other terms such as “encoding” (§§39, 40, 41, and more). Let me stress that I am not bringing this up as a criticism, but as something that, in my view, requires clarification.
9. In ordinary English, “code” means an item or list of items that are semantically linked to something else, something to which they are not otherwise related. The semiotic link is the result of a convention and its intension cannot be inferred from either of the two linked items. Genetics and computer science have borrowed the word “code” and given it a different meaning. An item of the genetic code transfers its “information” by a physical copying process in the generation of other molecules. In our computers, the transfer of “information” is achieved by the interaction of electrical charges. Hence such transfer is a causal affair and in neither case is there the need for a reflecting agent.
that is aware of a conventional meaning. This is an important difference from the semiotic domain, where knowledge of the particular convention is the only way of “reading” a code.

1 In §44, the author mentions the reliability of information and the incorporation of prior information by means of a Bayesian-like “information integration processing mechanism...” and he concludes:

“Unlike sensory information sources, motor information activates predictive sensorimotor codes, which predict changes in body perception that are dependent on the executed motor commands.”

2 I find it difficult to unravel the paragraph, because I cannot make up my mind whether “information” has to be interpreted semiotically as the instruction to select a specific item from a pre-established code, or biologically as the causal trigger to an action. The first interpretation, it seems to me, would invalidate the hypothesis as a model of the arising of consciousness because it entails an agent who is aware of coded meanings. The second interpretation would, I think, require further explanation that avoids ambivalent terms.

3 Similarly, in §72 the author states: “In turn, these complex interactions;” (i.e., between different individuals) “mediated by simple commands, must have started to lead to increasingly advanced symbolizations.” – If a command, as for instance in the military, is nothing but the trigger for a particular action, it does not function as a symbol, but its sound-image has, for the receiver, become the physical cause of an action. As such, it may well lead to more complex causal connections; but in order to lead to “more advanced symbolizations,” a reflective agent has to be posited, and this, it seems to me, seriously interferes with the intention of explaining the genesis of consciousness in terms of neurophysiological mechanisms.

4 In short, I feel that the use of terms such as “code,” “information,” and “symbol” for neural constellations that are not further described defeats the intention of the analysis presented because unless these terms are explicitly given specific neurobiological definitions they inevitably suggest the presence of a consciously reflecting agent.

5 This is a fine article, which makes many excellent points, in particular about the importance of anticipation; and how nice it is to see Kant so aptly quoted in a scientific text, what’s more in the original German! I do, however, have one serious criticism: it concerns the “internalist” stance adopted by the author. The article opens with the statement “perceived reality is a complex construct”; clearly, no constructivist could disagree with that! However, in the very next sentence Butz simply assumes, without argument, that we are dealing with an “inner” construct; he goes on, throughout the article, to speak of “inner realities.” I would like to explain (a) why I think this is a mistake; and (b) why it is a serious mistake … especially for constructivists.

6 Much of the problem stems from the way the article rather glibly talks as though the brain were itself a cognitive subject. This is apparent right away in the title, where “the brain” is attributed the status of an agent; later on “…the brain has to develop an additional representation of self…” (§66), and so on. A related problem concerns the way the author talks of “mirror neurons” (§§63–69), again as if neurons could actually do things such as imitate, empathize, and so on. The neurophysiological observations concerning “mirror neurons” are certainly striking, and it is understandable enough that they have caught the popular scientific imagination. But it is vital to understand that “mirror neurons” are merely correlates, phenomena that are to be explained; they are not themselves a proper explanation of any cognitive behavior and function. Talking about neurons and brains as though they were themselves bona fide subjects is a category mistake: it is people that perceive, think and so on, not brains. I suppose that for most people nowadays, in the West anyway, it simply seems “obvious” that consciousness, and mental activity generally, are processes that take place “in the brain”; indeed, that psychic activity just is – neither more nor less than – brain activity. Sometimes, however, it can be salutary to question the obvious.

7 Much confusion arises from the fact that the brain is so enormously complicated, and its functioning so mysterious, that it is easy to believe almost anything and indeed to attribute it with quasi-magical powers. Artificial neural networks comprising a mere dozen or so “neurons” can give rise to very intricate behavior in real or simulated robots; and the dynamics involved are already so complex that even in these relatively simple situations, where it is possible to have complete knowledge of the system, it is far from trivial to understand exactly what is going on. What are we to make, then, of the human brain with its 10^9 neurons and 10^11 synapses? What is done in current neuroscience is to correlate differences in mental activity with differences in brain activity, giving rise to the colored brain-images that have become so familiar. Precisely because we do not really understand what is happening, the temptation is strong to believe that we are actually seeing mental activity going on. However, correlation is not cause; and it is important to resist that temptation. To explain why, I will adopt a ploy proposed by Mikael Karlsson (1996) and compare the relation between brain activity and cognizing with a far simpler case that we can understand properly: to wit, the relation between leg activity and walking.

8 Clearly, we could not walk if we did not have legs – just as I fully admit that we could not cognize if we did not have brains. But it does not follow, at all, that walking “is” neither more nor less than leg activity. For example, an astronaut floating in weightless conditions could move her legs all she likes – that would not be walking. For leg movements to be involved in actual walking, a whole set of contextual conditions are necessary. The legs must be attached to an upright body, in a gravitational field and on a reasonably flat, more or less horizontal surface; there must be adequate friction between the feet and the ground; and so on.

9 An interesting point arises if we ask where the walking is taking place. Actually, it is rather difficult to give a precise spatial location to the walking. Parts of the walking have a precise location: I can say that this morning my walking started from my apartment when I left it, and stopped when I got to the café where I sat down to have a drink. But the
nature of the “contextual conditions” is such that overall, the walking has a nebulous location, without any clear-cut boundaries. Moving backwards from the centre, the location includes more than just the bits of ground where I put my feet; it arguably includes the whole street, and, in a way, (but less definitively) the buildings and trees and parks that I pass by. Moving inwards from the cosmos as a whole, we can say that my walking is definitely happening on the planet Earth, rather than the solar system (because of the composition of the atmosphere); in France (because of the linguistic context), and in Paris (because of the weather, and the general atmosphere...). Thus, there is no clear-cut boundary between what is contextually relevant and what is not.

But even if the location is “nebulous” in this way, and difficult to pin down, there is one thing that we can say for sure: the walking is not happening “in the legs.” I claim that exactly analogous considerations hold for the relationship between the brain and the mind. The brain is only involved in perceiving, thinking, imagining, feeling, being conscious and so on — what I have called “cognizing” for want of a better general term — because it is contextually situated in the body of a living organism, itself engaged in actions in an environment.

Butz himself implicitly recognizes this to a very considerable extent, by the importance he (quite correctly) attaches to the “grounding” of cognizing in embodied sensory-motor dynamics. However, the “brain-centered” talk remains a niggling worry; and as I indicated at the start of this commentary, it has what I consider to be a particularly damaging consequence.

“Perceived reality is a construct”; yes, we can all agree with that. But why should we assume that it is an “inner” construct? If the mind is not in the brain, as I have argued, the “perceived reality” is not “in” the head either. Since the brain is only involved in actual cognizing to the extent that it is situated in a body that is interacting with its environment, the reality that is “brought forth” (Maturana & Varela 1987) or “enacted” (Varela et al 1991) is co-constructed in the interaction between organism and environment. This co-constructed is constrained (and made possible) by the particular features of both the organism and the environment. The position I am arguing for is neither “internalist,” nor “externalist,” but rather seeks to go beyond the opposition between them; the construction happens in the interaction, and insofar as it is “located” anywhere, it has a “nebulous” location, rather like the walking in my simple example.

Why does this matter for constructivists? Well, I think it is important because even at the best of times constructivism is already widely accused of idealism, solipsism and/or relativism, so the last thing we need is to give free ammunition to our opponents! We need to be able to say that if reality is indeed constructed, the construction in question is constrained by a “reality principle”; constrained, that is, not just by the particular features of the organism, but equally by the environment, and above all by the interactions that occur between the two.

Anticipation and Self-consciousness
Are these Functions of the Brain?

Humberto Maturana Ronesín
Matriztic Institute, Santiago (Chile)
<info@matriztica.org>

My reflections will be first, about how the brain operates in the generation of the adequate behavior of an organism in a changing medium, and second, about how self-consciousness appears in the course of the history of humanness.

The first question arises from our daily experience of seeing an organism behaving in a way that seems to anticipate some desirable result, or from observing a developmental process as if it were guided by a drive to reach some particular form. These observations have given rise to the suggestion that the brain and the organism operate under the action of some anticipatory drive. The second question arises when we hold the view that language is an instrument that we human beings use to refer to entities that are external to us, and we find ourselves asking, how do we distinguish ourselves if we are not objects external to ourselves?

My claims

1. In these reflections I shall claim that the operation of the nervous system is not anticipatory, and that as a structure-determined system it cannot be anticipatory, even if for an observer it may seem to be so as he or she sees an organism behaving adequately in its changing niche. I shall also claim that self-consciousness is not the result of some particular neuronal process in the nervous system, but that it is a manner of living that has arisen in our human history as the consequence of our living as language beings in a flow of recursive coordinations of consensual doings in which we are objects of our coordinations of doings.

4. Indeed, I shall claim that there are no anticipatory processes in the cosmos and that the result of a process is not and cannot be part of its occurrence, and that self-consciousness is the particular inner feeling that we feel when we see that we are doing what we are doing.

Structural coupling: My fundaments for the answer to the first question

5. We living systems are molecular systems. As molecular systems we are structure-determined systems, and as structure-determined systems we are systems such that nothing external to us can specify what happens in us. Something external to us impinging upon us can only trigger in us structural changes determined in our structural dynamics. Therefore, we human beings as molecular living systems are structure-determined systems, and all that applies to living systems as structure-determined systems applies to us. Structural determinism is not an assumption; it is our condition of existence.

6. A living system arises in the operations of distinction of an observer as existing in three non-intersecting operational domains: the domain of the realization of its molecular autopoiesis, the domain in which it operates as a totality, that is, as an organism, and the domain in which it realizes its relational living in operational dynamic congruence with its niche as this arises continuously in the actual realization of its manner of living as an organism of a particular kind.

7. When the observer distinguishes an organism, he or she brings forth in the same act the operational-relational environment in which he or she sees it, as well as the opera-
An organism exists in a continuous process of structural changes as a result of its own internal structural dynamics modulated by the structural changes triggered in it by its interactions in its niche. The niche in which an organism realizes its living occurs in a continuous structural change arising in the interplay of the dynamics of the medium of which it is part, and the structural changes triggered in it by its encounters with the organism.

The organism and its niche constitute an operational unity or totality in which both, the organism and its niche, change together congruently, in a process that follows a path that is continuously arising anew in the flow of their interactions. The path followed by the congruent changes of the organism and its niche arises in the encounter of otherwise independent processes, and an observer cannot predict its course even though he or she can expect one if the encounter occurs as part of a recurrent conservative dynamic that he or she has seen before as the environment of the organism, or has imagined as the medium in which it exists.

What an observer distinguishes as the behavior of an organism is not something that the organism does by itself, but a changing relational dynamics that arises in the recursive encounter of the organism with its niche. As a changing relational dynamics, a behavior involves at the same time the organism in the realization of its autopoiesis, and the niche in the realization of its participation in the structural dynamics of the medium at that instant.

In these circumstances, what an observer sees as the behavior of an organism is its tangent encounter with its niche in a structural dynamics of coherent structural changes that is the result of the history of recursive interactions between the organism and its niche. I have called such dynamics of coherent structural changes in which the organism conserves its autopoiesis, structural coupling.

When an observer sees an organism conserving its living (autopoiesis) in its domain of structural coupling in its niche, he or she sees it as an organism generating adequate behavior in its niche, whatever this may be. For the observer, the adequate behavior of the organism may appear as anticipatory, that is, as foreseeing what “the organism needed.” Yet the organism was only operating in the coherences of its structural coupling in its niche, in the present of a history of recurrent dynamic structural coherences that constituted a matrix of relational-operational coherences in which the organism can conserve its living precisely because the organism and its niche change together around the conservation of the manner of living of the organism.

Systemic laws are abstractions of the spontaneous operational coherences of systems in any part of the cosmos that the observer brings about in its living. Three are the most fundamental ones, and I present them below.

1. Systemic law of the observer and observing: “Everything said is said by an observer (a human being making distinctions in languaging) to another observer that could be him or herself.”

2. Systemic law of conservation and change: “Whenever in a collection of elements a configuration of relations begins to be conserved, a space is opened for everything else to change around the configuration of relations being conserved.”

3. Systemic law of the course of history: “The course that follows the history of the structural change of organisms in general, and of human beings in particular, arises at every instant of the living of the organisms or of the human beings defined by the preferences and desires of the organism or the human being, and not by what an observer may think are opportunities or possibilities for the organisms or human beings involved. Something is an opportunity or a possibility only if it is desired.”

In synthesis: What an observer sees as adequate behavior in an organism, is its operation in the present in dynamic structural coherence with the medium in its niche that is the result of the conservation of the operational structural coherence of the organism and its niche in a history structural drift in which the organism and its niche have changed together congruently. Such a process occurs spontaneously without the participation of any guiding orientation towards an end as a result of the operation of the organism as a structure-determined system. Structural determinism is a constitutive basic feature of the cosmos that we human beings bring forth with our operation as molecular systems. Structural determinism does not imply predictability. Structural determinism is the basic condition that creates the possibility of understanding and explaining of all processes in the cosmos, even probabilistic ones.

There is no possibility of the operation of any process that could be legitimately called anticipatory or that could be legitimately considered to occur under an anticipatory drive. If an observer sees an ordered process giving rise to some result that is surprising or admirable to him or her, and if he or she does not understand structural determinism, he or she will not understand the dynamic architecture that gave origin to that result, and will invent some semantic notion to connect the different instances of the process in a way that he or she can accept. The notion or idea of an anticipatory drive is such a semantic notion under the form of an a priori explanatory principle (cf. Ximena & Maturana 2008).

Everything in the cosmos occurs as it occurs as a continuously changing present in which complexity arises in the encounter of processes that happen to be locally dynamically independent, even though they may be part of a larger systemic one. This is expressed in the following systemic law: “The result of a process does not and cannot operate in the process that gives origin to it” (Ximena & Maturana 2008).

Languageing and objects: My fundamentals for the answer to the second question

If we attend to what we do in language, we will realize that language occurs as a flow of living together in coordinations of coordinations of consensual doings. That is, we will realize that language occurs as languaging, in the flow of our living together in recursive consensual coordinations of doings. Language has the concreteness of the doings in...
the domain of doings in which we coordinate our doings.

22. Objects, entities, notions, ideas, concepts etc., arise as coordinations of coordinations of doings, and do not exist otherwise. The meaning of the words, sentences, signs and symbols is not in the words, but in the flow of coordinations of doings that they coordinate. And a word can have as many different meanings as there are different flows of recursive coordinations of doings in which it participates.

23. When a child learns to name an object he or she does not learn to name a preexisting entity, but learns a flow of recursive coordinations of doings with the language persons with which he or she may be living. So a baby that learns the ball, learns balling, and when he or she learns the doll, learns dolling. Thus, the baby learns in the same way, eyes, feet, mouse, lips, … self, thinking … as flows of recursive coordinations of consensual doings with other human beings, as manners of living together in consensual coordinations of doings … and emotions as manners of relating in coordinations of consensual coordinations of relational doings.

24. As an object arises as a flow of consensual coordinations of doings; the domain in which the arising object arises and has presence also appears as a domain of recursive consensual coordinations of doings in which the arising object participates in the recursive coordinations of consensual coordinations of doings that constitute its meaning. As the objects do not pre-exist the flow of consensual coordinations of doings that they are, the domains of recursive consensual coordinations of doing in which they exist as coordinations of doings arise anew with them, and new objects constitute new domains of existence as new domains of recursive consensual coordinations of doings.

25. The self arises in the same way that any other object or entity arises, namely, in the recursive coordinations of consensual doings, first in the coordinations of doings in relation to doings with the body, and then, in the recursions of the coordinations of coordinations of doings with doings with the body in relation to other coordinations of doings. When we participate in this recursive dynamics of coordinations of doings, there arises in us the special configurations of inner feelings that we now distinguish in the flow of our languaging as self and as our self.

26. The configuration of recursive coordinations of consensual doings that constitute an object in our coexistence with other human beings is what I call “operations of distinction”. So, when someone says that he or she is distinguishing an object or entity of any kind in his or her living as a language being, he or she is bringing forth a domain of consensual doings and recursive consensual doings in which that which has been distinguished has presence in a flow of recursive coordinations of consensual doings. And that flow of coordinations of recursive consensual doings constitutively implies an operational-relational matrix of coordinations of doings as a domain of human living in which the participating human beings distinguish entities that could be themselves.

27. In synthesis: The self is not an entity; it is a particular feeling in a manner of operating in a flow of recursive coordinations of consensual coordinations of doings that involve the distinction of the doer of the doings as the observer of the doings being done. Furthermore, when in the recursions of the distinction of the observer, occur recursive coordinations of the observer doing its doing, the special feeling of self-consciousness arises as the feeling of feeling the coordinations of doing that the feeling of observing entails. In other words, self-consciousness occurs as an inner feeling felt by an observer that is seen by another observer (that could be him or herself) in the circumstances of distinguishing him or herself distinguishing him or herself.

28. Whenever a recursion takes place an intrinsically new domain of doings arises, and at the same time a new domain of feelings is lived, which we may live as a completely new domain of meanings in our doings. For example, science, philosophy, theories … technology have arisen like this. Once a new domain of recursive coordinations of doings, and hence, a new domain of reflections in doings, has arisen, our human living changes and we live the arising of new surprising happenings that we do not know immediately how to explain, and we feel that we are in front of a mystery. What we should never forget, however, is that structural determinism is the fundamental constitutive condition of our existence, and new operational domains arise in our living whenever our living becomes associated with recursive process in our doings, and … our thinking and reflecting, and that these are dimensions of our understanding that we cannot forsake if we want to understand our living as human beings.

Final remarks

29. We all know that the result of a process does not participate in the process that produces it as a result. But as we live a culture in which we are accustomed to think in finalistic terms, that is, in a process designed with the purpose of obtaining the desired result, we frequently confuse our description of what we see in the appearance of what happens, with what may be happening that gives rise to such appearance. Thus we frequently treat a process in which we see a purpose as if there were a purpose in the operation of that process. This is what we do in biology when we use teleological considerations to understand the function of some unknown structure in an organism. That way of thinking may be useful for a while to find out how that structure operates in the relational space of the organism that has it, but does not tell us how that structure does what it does.

Note

1. The systemic laws here presented were taken from the essay on systemic and meta-systemic laws published in Ximena & Maturana (2008).
The Anticipatory Drive and the Principle of Least Time

Samarth Swarup
Virginia Bioinformatics Institute
<swarup@vbi.vt.edu>

Introduction

Is there a single unifying principle that explains all brain structure and function? It is a tantalizing prospect, and there have been many suggestions, such as neural Darwinism (Edelman 1987) and hierarchical Bayesian inference (Lee & Mumford 2003), to name just two. Butz proposes an anticipatory drive that is postulated to be responsible for brain function and the development of brain structure. It is especially interesting because Butz suggests that the anticipatory drive guides brain development, in addition to function. This is an ambitious and provocative proposal, and bears close examination. I focus on just one aspect here: in the spirit of constructivism, I ask, where is it?

Locating the anticipatory drive

Some human drives, at least, are relatively well understood. Hunger, for instance, is known to be triggered through a signal transmitted from the stomach and liver to the hypothalamus. When blood sugar levels start to drop, this signal causes the hypothalamus to activate hunger-related behaviors, such as food-seeking; and when we have eaten and food starts to move from the stomach to the intestines, another signal causes the hypothalamus to suppress the hunger drive and related behaviors.

Some anticipatory and cognitive uses, since they opened up the evolutionary possibility to anticipate future events and take goal-directed action. Admittedly, neither our hypothesis nor the author’s is currently supported by any data and thus should be considered as speculative. In any case, we argue that the author’s picture of the development of increasingly complex forms of cognition from anticipatory capabilities is not hindered at all by our hypothesis, except, perhaps, the idea that an anticipatory drive is necessary when (maybe) an exaptation could be sufficient.
Can we similarly locate the anticipatory drive? Since the anticipatory drive is supposed to influence brain development as well as function, we are essentially asking about the causal structure that relates four abstract components: the genetic program, environmental influence, the anticipatory drive, and brain structure and function. The simplest assumption is that the first three are independent of each other and together determine the fourth. This is illustrated in Figure 1.

This is an unsatisfactory solution, however, because it does not provide a physical substrate for the anticipatory drive. In fact, it seems clear that Butz is not arguing for this view, since he states that a structured environment and a structured body (“morphological intelligence”) are pre-requisites for anticipation and the anticipatory drive (§11). This suggests, then, the modification shown in Figure 2 where the anticipatory drive is created through the combined influence of genes and environment, and then, in turn, shapes the development of brain structure and function.

In this view, the anticipatory drive would have to be embodied in a structure that develops prior to the brain. If we assume, and the general discussion in the article supports this view I think, that by “brain” Butz is actually referring to the cerebral cortex, and not the brainstem or spinal column, then perhaps the anticipatory drive could be located in these areas. These areas are known to develop very early, mostly during the first and second trimesters of gestation, and govern most autonomous functions such as the heartbeat and breathing, and reflex actions such as grasping, feeding, simple eye movements, etc.

The problem with this view is more subtle. It is, at least in some cases, that the developmental influence that leads to anticipatory behavior goes the other way. For example, the deep superior colliculus, which sits at the top of the brainstem, is thought to be responsible for generating eye saccades towards anticipated target locations in the visual field (Anastasio, Patton & Belkacem-Boussaid 2000). This anticipatory behavior depends on being able to correctly integrate multi-modal information in the calculation of target probabilities, which is manifested in a phenomenon known as multi-sensory enhancement. This refers to the fact that multi-modal neurons in the superior colliculus respond much more strongly when they receive input from two modalities simultaneously (auditory and visual, say), than they do to either modality alone. This enhanced response reflects the enhanced probability of a target due to information from multiple channels. Crucially, this enhancement appears only when descending projections from higher areas of cortex, such as the anterior ectosylvian sulcus (AES) and the rostro-lateral suprasylvian sulcus (rLS), reach the superior colliculus, which happens a few months after birth (Jiang et al. 2001). Clearly, in this case, causality is directed from the cortex to the brainstem in the emergence of anticipatory behavior.

Thus, it seems that we must make a further modification to our schematic diagram. At least some cortical structures must emerge before the anticipatory drive. This revised view is presented in Figure 3. I believe, however, that this view is also unsatisfactory because it seems to be heading towards a “god of the gaps” argument. I am afraid that the more closely we examine the development of various brain structures, the more structures we will end up putting in the upper “brain structure and function” box in Figure 3, and the fewer in the lower one.

There is no doubt that the brain anticipates. The view of the brain as an anticipatory device represents a deep insight, in my opinion – of the sort that could form the basis for
a unified theory of the brain. Despite this, the evidence for an anticipatory drive generating brain structure and function is somewhat tenuous. However, I believe there is a fourth view, besides the three I have presented above. Assuming the anticipatory drive exists may turn out to be an excellent guiding principle for inferring structure and function in various parts of the brain. In this view, the principle of the anticipatory drive is true, but acausal. Let me explain this statement through an analogy.

The Principle of Least Time

Pierre de Fermat, in 1662, proposed the Principle of Least Time, which can be paraphrased as, *light travels between two points along the path that takes the least time.* This has been confirmed repeatedly (in a slightly revised form) through experiment. It explains, for example, why the surface of a road appears wet in the distance on a hot day. It happens because the air close to the surface of the road gets heated up and becomes less dense. Light travels faster through a medium of lesser density, and therefore light from straight ahead curves downward as it comes towards us (the observer), and makes the road look reflective, or wet. Fermat’s principle can also be used to derive the laws of reflection and refraction, among other optical phenomena. In fact, the principle is so well-accepted that it has long been taken as the definition for a ray of light (Schuster 1904).

A moment’s thought, however, reveals Fermat’s principle to be acausal. It determines the path that light will take, based on where it will end up. In other words, when we hear that light takes the path of least time, it makes us ask, *how does it know?* How does it know where it is going, and how does it calculate the appropriate path? The answer, of course, is that it doesn’t know. Fermat’s principle is more appropriately viewed as an *effect,* i.e., a consequence of a deeper theory (Salmon 1998: 169). In fact, it has been shown to emerge from Huygens’ wave theory of light in the classical framework, and from the main principle of quantum electrodynamics in the quantum framework (Feynman 1988). However, it remains a widely used principle in optics for deriving the paths of light rays in many practical problems.

I believe that the anticipatory drive may turn out to be like the principle of least time, i.e., acausal, but very handy.
One direction is the field of mental time travel, which mainly deals with episodic memories and prospections. This field was founded by Tulving (1972), who also introduced the concept of “autonoetic consciousness” (providing first person perspective on mental episodes). Then there is the neurological approach that, among other things, has invested interest in the so-called wakeful rest state of the brain, a state that is highly associated with the sensed inner world. A seminal work in this line of science is the paper by Ingvar (1979). He also coined the idea of “a memory of the future.” A third field is that of affective forecasting, which investigates abilities to forecast future mental states in different scenarios. In the front line of this research stand Gilbert and Wilson (e.g., 2005).

The above three directions have somewhat different approaches and address partly different questions. However, they reach some common conclusions. One of these is, perhaps ironically, that humans are inaccurate in matching the construction of an inner world to the past real world or the future real world. Despite this lack of truthfulness, the construction of a sensed inner world appears to be highly adaptive. Another important consensus that could be derived from these research directions is that the inner world probably serves its best function in relation to potential futures, and not to the present or the past.

Arriving at the core of the argument: the subjective experience of the self, and perhaps the self itself (whatever it is), is necessary to unlock the inner world of potential futures that impact current decision making in radical ways. If you do not feel it is yourself in that future, you will have no reason to act according to the prospection.

Furthermore, you will naturally never be able to visit the future with the sensing self if deprived of sensations because you would simply not exist in that future. This leads to the intriguing question: is the sensational self mainly an adaptation for anticipation? It might be that an immediate situation does not require the strong sense of a self that is needed for projecting it into a mental future. However, one should bear in mind that even if the sensed inner world is indeed mainly an adaptation for anticipation, it does not follow logically that the sensing self should be such an adaptation.

Maladaptive Anticipations

Despite this lack of truthfulness, the construction of a sensed inner world appears to be highly adaptive. Another important consensus that could be derived from these research directions is that the inner world probably serves its best function in relation to potential futures, and not to the present or the past. Arriving at the core of the argument: the subjective experience of the self, and perhaps the self itself (whatever it is), is necessary to unlock the inner world of potential futures that impact current decision making in radical ways. If you do not feel it is yourself in that future, you will have no reason to act according to the prospection.

Furthermore, you will naturally never be able to visit the future with the sensing self if deprived of sensations because you would simply not exist in that future. This leads to the intriguing question: is the sensational self mainly an adaptation for anticipation? It might be that an immediate situation does not require the strong sense of a self that is needed for projecting it into a mental future. However, one should bear in mind that even if the sensed inner world is indeed mainly an adaptation for anticipation, it does not follow logically that the sensing self should be such an adaptation.

Nevertheless, from an evolutionary perspective, it certainly raises the possibility. The target article hints at the fact that the sensational self indeed is an anticipatory adaptation; if this could be comprehensively explained by the anticipatory drive, then this concept would have proved its worth to me (my sensing self).
helplessness has subsequently been investigated in humans and is implied in some forms of depression (a psychological disorder, characterized by feelings of sadness, anger and frustration). It is assumed that a perceived absence of control over the outcome of a situation contributes to depression. The anticipation of not being in control is contrary to what the anticipatory drive stands for: the ability to control oneself and the environment. Thus, anticipations may not always promote enhanced control of oneself and the environment.

Everyone has probably at some point in their lives experienced something akin to “worry”—a lasting preoccupation with future bad events, which may or may not occur. Though worry has some beneficial effects, because it enables someone to prepare for negative events (e.g., one starts to search for a new job when one is worried about losing the current one), this is not always the case. Chronic and exaggerated worry (without a substantial cause justifying the degree of worry) is the key characteristic of generalized anxiety disorder. Persons with generalized anxiety disorder may worry excessively about health, money, family, or work, and continually anticipate disaster. The capacity to anticipate aversive events is therefore, on the one hand, important for successful adaptation, and on the other hand also plays a role in the abnormalities that contribute to excessive worry and anxiety. Thus, anticipation may not always be beneficial.

Memories of emotional events are enhanced compared to memories of other types of events. Nitschke et al. (2006) showed that brain activation during the anticipation of seeing aversive pictures predicted memory of those pictures after they had been viewed. Anticipation of aversion recruits brain regions that are associated with memory for emotional events, thereby potentially enhancing the responses to aversive events. The act of anticipation may play an important role in how fresh the memory of a negative event remains. Thus, anticipation of emotional events plays a key role in the enhancement of emotional memory, particularly with negative emotions. This mechanism seems to be an important aspect in social phobia, the fear of being evaluated negatively in social situations (for example when giving a presentation). The expectation that something bad is going to happen may enhance the memory of it if indeed a social interaction does not work out as smoothly as one might have wished for. This leads to a vicious cycle, increasing anxiety before and during the next social situation even further. Again, this example illustrates that anticipation may not always be beneficial.

Deficits in processes related to anticipation have been proposed for a variety of other disorders, e.g., schizophrenia (Frith, Blake-more & Wolpert 2000), autism (Williams et al. 2001), and alien hand syndrome (Spence 2002). On the one hand, this and the above examples of maladaptive anticipations strengthen the importance of the concept of an anticipatory drive due to its explanatory power. On the other hand, one should be aware that anticipation per se is not necessarily only adaptive, but that anticipations can be maladaptive.

One open question with respect to adaptive and maladaptive functioning is whether the construction of the self is related to the strength of the anticipatory drive or to the content of anticipations. It could be that the strength of the anticipatory drive itself is important—excessive worry may be due to a too strong anticipatory drive. The strength of the anticipatory drive could also be irrelevant; rather, it is the content of anticipations that may shape the development and the construction of the self.
A Computational Linguistics Perspective on the Anticipatory Drive

Günter Neumann
German Research Center for Artificial Intelligence (DFKI) <neumann@dfki.de>

stresses that prediction has not evolved for the sake of prediction but for the sake of anticipatory behavior and action (§3). However, this may be a trivial statement as all of our abilities, including perception, have, in the end, evolved for adapted behavior and adapted actions. More importantly though, pointing teleologically to action a priori biases the appraisal of empirical findings and particularly brain imaging findings in a special way, as recently reflected by the great elation for embodiment. It has to be kept in mind that it is not at all clear what kind of algorithms we see at work when the “motor system” is engaged in a task: hundreds of thousands of neurons have their place in a single measured voxel and may serve a mosaic of phenomenologically moderately related behavioral functions. Thus we call the motor system “motor system” simply because motor control is one of its most prominent functions—until we see how motor control and further functions are more appropriately subsumed under a new umbrella term—for instance “prediction system” instead of “motor system.”

Two casual claims of the paper clearly have to be rejected on the basis of neglected imaging data: firstly, that “Unlike sensory information sources, motor information activates predictive sensorimotor codes” (§44); and secondly, that “brain modules that are not directly connected to sensory input or motor output will process inherently anticipatory codes” (§28). Provided that the variable meanings of terms such as “code” or “brain modules” are properly understood here, findings suggest that perception suffices to activate “predictive sensorimotor codes” (namely in premotor-parietal loops), and that the “processing of anticipatory codes” does happen inter alia in brain areas that are indeed directly connected to sensory input and motor output (namely in the motor system) (for details, see Schubotz 2007).

Strikingly, although the paper refers in large portions to issues and models of motor control, it neglects a function of mirror neurons in motor control that has been put forward as their genuine one. As pointed out by Keysers and Perrett (2004), the network that embeds mirror neurons plays a role in predicting change produced by the animal itself and in the distinction of this kind of change from change induced by another animal (explaining why, for instance, the animal is not frightened at the appearance of its own forelimb approaching a target in front of it). This, in fact, may be an interesting point at which to start speculating, if one wants to, about mirror neurons’ contribution to perceiving our own bodies and becoming aware of our “embodied self.” As Keysers’s and Perrett’s paper stresses, however, it seems reasonable to step back and try to recover a more realistic sense of proportion: the interpretative burden on mirror neurons now seems to overwhelm a thin and sober data basis.

However, Butz, like many others these days, alludes to these veritable miracle neurons as underlying our ability for empathy (§69). It is noteworthy that no one has yet demonstrated any empirical evidence in favor of this claim. Furthermore, no one has found any direct evidence for the existence of mirror neurons in the human brain. The only evidence available is of higher metabolism in an area that is suggested to be homologous to the macaque area F5. Thus, we have an idea, but no data. Mirror neurons belong to a big family of sensorimotor neurons housed by the premotor cortex. They are tuned to our own and others’ actions, just as canonical neurons are tuned to objects (Rizzolatti & Fadiga 1998) and other premotor neurons (lacking a catchy name) are tuned to space (e.g., Graziano & Gross 1998). Macaque studies from the last two decades strongly suggest that premotor neurons are generally relevant for all kinds of interaction with our environment, including “other individuals” (§69), be it in the context of action planning or in the context of merely paying attention to our environment (cf. premotor theory of attention, Rizzolatti et al. 1987).

Merely as an aside note, the target article’s way of using the notion of an anticipatory drive appears at many points in the form of the breath of life. To pick out only one of many examples, “a self-representation … allows the anticipatory drive to distinguish self from other” (§63). Similar metaphorical use of neurons and the brain as agents doing this and that (e.g., in §66 “Because the brain recruits its own behavior control system to represent the behavior of others, it needs to be able to distinguish self from other behavioral codes,” or in §65 “mirror neurons distinguish between different behavioral intentions”) should definitely be avoided, particularly when we aim to bridge gaps between philosophical, psychological and neurocognitive accounts. When loop-shaped internal model accounts of motor control are discussed and brain studies are cited, it does not seem tenable to speak in a naïve manner about systems in the (brain) system controlling, representing, deciding, or the like; otherwise, we face the homunculus problem and step into an infinite regress. Brains (or neurons) are not persons, nor is the anticipatory drive. Personalization is suspect since it may generate pseudo-solutions when trying to elucidate the function of complex systems.

In this commentary to Martin V. Butz’s target article I am especially concerned with his remarks about language (§33, §§71–79, §91) and modularity (§32, §41, §48, §81, §§94–98). In that context, I would like to bring into discussion my own work on computational models of self-monitoring (cf. Neumann 1998, 2004). In this work I explore the idea of an anticipatory drive as a substantial control device for modelling high-level complex language processes such as self-monitoring and adaptive language use. My work is grounded in computational linguistics and, as such, uses a mathematical and computational methodology. Nevertheless, it might provide some interesting aspects and perspectives for constructivism in general, and the model proposed in Butz’s article, in particular.

The understanding and production of natural language is often interleaved in many situations of language usage. For example, humans monitor what they are saying and how they are saying it. They already plan and revise what they are going to say before they actually spell it out, e.g. in order to reduce the risk of misunderstandings (of course, depending on the degree of attention). Or they try to control the generation of un-
ambiguous utterances (presupposing that the underlying message is as clear as possible). They can adapt themselves to the language use of others (by mutually synchronizing the individual activation of each interlocutor). For example, in the case where new ideas have to be expressed for which no mutually known linguistic terms exist (e.g., in situations of information exchange between experts and novices), the speaker’s adaptability to the hearer’s use of language is necessary in order to make it possible for the hearer to understand the new information. Humans are also good at completing the production of an utterance that was started by the interlocutor (“Oh, I know what you are going to say!”), and they are quite good in filling gaps in utterances (as presented in some psycholinguistic experiments, or similar language games). It is also a wide-spread assumption that understanding and production share a grammatical database (“the language we speak is the same as the language we understand,” as remarked by Pinker 1994). The idea of representing grammatical knowledge only once and using it for performing both tasks seems to be quite plausible, and there are many arguments based on practical and psychological considerations for adopting such a view, e.g., Ristad (1993), Kuhn (2000), Evans et al. (2007). Furthermore, developments in constraint-based grammar theories – due to their declarative and formal status – demonstrate that grammar reversibility is computationally feasible.

In my computational model of language processing, I propose and realize (through a concrete computer program) a consequent approach to grammar reversibility through a model for interleaving parsing and generation on the basis of a uniform grammatical processing model. This model uses a reversible mechanism for interleaving parsing and generation in order to model interactions in which both understanding and production take place, e.g., monitoring, revision, and anticipation feedback loops. If we distinguish two principle ways of interleaving, namely where generation is used in support of parsing, and where parsing is used in support of generation, then interleaved parsing and generation means a) the use of one mode of operation for monitoring and controlling the other, and b) the use of structures resulting from one direction directly in the other direction. For example, during parsing of an utterance, generation can already take place for the just-parsed parts, by taking into account the parsing results at a very early stage of processing. Self-control of the parsing process through interleaved generation is also important for handling under-specified or ill-formed input where generation is used to “guess” the missing parts or to perform some sort of repair work (e.g., to “guess” what the ill-formed utterance probably means). During natural language production, interleaved parsing is important to obtain hearer-adaptable production of utterances. The basic task of monitoring is to gain information about processing that is not necessarily obvious, i.e., a device is called up that can make this information available to the speaker or the hearer. Clearly, additional knowledge or preference-based mechanisms are needed for the realization of its full functionality, so that interleaved parsing and generation is only one step in that direction – but it is, however, a substantial one.

Note that this idea of interleaved interactions comes close to the idea of the anticipatory drive (see §5 in the article of Butz). For example, if we are in the production mode, then generation follows a goal-directed behaviour by computing possible target utterances from some semantic representations, which are interpreted bottom-up by the parser in order to analyze “how the utterances might be understood or interpreted by the expected audience” (cf. also §14). Note that I am assuming that the interaction actually takes place on the level of the input/output (i.e., on the level of semantics and phonology). I consider this to be a consequence of the assumed modular status of the grammatical system, as discussed below.

A major innovation of the interleaved approach is the notion of item-sharing, which permits partial results computed in one direction to be re-used in the other direction. This possibility allows an incremental self-monitoring process in which partially generated expressions are parsed to identify ambiguities and cause the generator to consider other, possibly less ambiguous, paraphrases without redundant re-computations. Modelling such an interleaved approach on the basis of non-uniform processes is problematic – if not impossible. For example, if two different grammars and processes are in use, additional translation operations are necessary for parsing and generation in order to exchange partial results. Since this is a complex process in itself, not only maintaining two specific grammars but also two different processes, it will be a handicap for an interleaved approach. The item-sharing approach has also been extended with Machine Learning and statistical-based approaches in order to model domain and language adaptation, cf. Neumann (2004) and the references there.
Objectifying the Subjective Self

An Account From a Synthetic Robotics Approach

Jun Tani
RIKEN Brain Science Institute (Japan)
																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
ding and generation (considered from a competence view) are non-deterministic processes, i.e., without any further (non-grammatical) information both processes have inherent degrees of freedom; cf. also Shieber (1993). Furthermore, the mentioned properties (reversibility, implicit search space, and modularity) are also important in the context of the “recursion-only hypothesis” discussed by Hauser, Chomsky & Fitch (2002), who claim that recursion (i.e., providing the capacity to generate an infinite range of expressions from a finite set of elements) is the only uniquely human component of the faculty of language.

However, at least from a language usage perspective, concrete language utterances seem to be deterministic, i.e., at some point some decisions are made. What is the nature of these decisions, if they are not grammatical? At least two possibilities can be considered: either the decisions are based on preferences (which are learned through past experience) or through control, i.e., explicit strategies that are used to interpret the results of other processes in order to provide feedback. I consider preferences as “un-intelligent” in the sense that they are merely applied (blindly) and control-strategies as “intelligent” because they are applied purposely. Of course, both aspects are somewhat integrated, i.e., language processing is both preference-directed and controlled. It seems that the interleaved approach and the anticipatory drive at least have important properties that classify them as an explicit control-strategy.

As already said at the beginning, the proposed computational model is mainly rooted in mathematics and computational linguistics and does not claim any cognitive “realism”. However, the realization of the underlying ideas (i.e., grammar reversibility, uniform parsing and generation, self-monitoring) on such a technical algorithmic level requires fine-grained details. Furthermore, the idea of the interleaved approach of parsing and generation is also strongly motivated by the assumption that complex anticipation feedback loops are necessary for the modelling of highly self-adaptive natural language systems. And as such, it might be of interest for the further outline of the model of the anticipatory drive proposed by Butz, especially concerning the aspects of language and modularity. Clearly, the computational model in its current form is realized on a high symbolic level. Probably, it is too high to integrate it directly on a neuronal level. Seen as such, it could be of scientific interest to explore a) how to integrate sub-symbolic approaches into such computational models as I have outlined, and b) how to integrate such complex symbolic interactions into the model of the anticipatory drive.

The current essay by Butz brilliantly illustrates a constructivist account for one of the essential problems in psychology and cognitive science: that of how the subjectively perceived self can be objectified. His theory stands on so-called “anticipatory behavior” (§4), which is considered to play an important role in learning behavioral causalities in the environment that forms the inner reality during development. Butz links two distinct pathways in brains – a dorsal one and a ventral one (§59) – in which the former constructs a body space based on proprioceptional encoding of body postures and the latter does so for visual categorizations of objects. His interesting argument is that bidirectional interactions between these two pathways initiate the objectification process of the subjective self, especially during tool usage as described in Iriki’s studies (§61). During the use of each familiarized tool, a distinct sensory-motor structure appears in seamless coupling with parietal neuronal activities that in turn subjectify the tool usage within the body space. On the other hand, when the tool is detached from the body, the tool that was once subjectified within the body space, is now objectified via visual categorization within the object-centered coordinate system in the ventral pathway. Finally, he postulates that this process of objectification of formerly-subjectified tool usage might lead to the objectification of the subjective self (§89).

Being impressed by Butz’s psychological account for the process of objectification of the subjective self, I would like to postulate, from my expertise in synthetic neuro-robotics studies, possible neuro-dynamic mechanisms that account for his psychological theorem. Before considering the actual mechanisms, I would like to start by discussing differences between notions of self and self-consciousness. A particular concern is that the state of self-consciousness in the reflective stage might not occur just by being able to anticipate motor-caused sensory feedback. Instead, the self might become consciously aware only when a prediction goes wrong, generating errors.

This interpretation of self-consciousness may be supported by Heidegger’s (1962) example of the hammer, which is well-known in phenomenology. For a carpenter, when everything is going smoothly, the carpenter and the hammer function as a single unit. But, when something goes wrong with the carpenter’s hammering or with the hammer, then the independent existences of the subject (the carpenter) and the object (the hammer) are noticed by the carpenter. Here, the carpenter becomes self-conscious, in the same ways that he or she becomes conscious of the world becoming problematic when things just do not match expectations.

Tani (1998) reconstructed this phenomenon in his neuro-robotics experiments with emphasis of the cognitive roles of regression for learning from the past and prediction of the future. In this experiment, a mobile robot with vision learned to predict the next landings with vision learned to predict the next landing. This interpretation of self-consciousness may be supported by Heidegger’s (1962) example of the hammer, which is well-known in phenomenology. For a carpenter, when everything is going smoothly, the carpenter and the hammer function as a single unit. But, when something goes wrong with the carpenter’s hammering or with the hammer, then the independent existences of the subject (the carpenter) and the object (the hammer) are noticed by the carpenter. Here, the carpenter becomes self-conscious, in the same ways that he or she becomes conscious of the world becoming problematic when things just do not match expectations.
In other words, the self can exist in the coherent phase, but it can be consciously aware only in the incoherent phase. It is further argued that self-consciousness, which appeared only intermittently in Tani's robot, may well represent the momentary self described by William James (1950). Gallagher (2000) regards this type of self as a minimal self, which is only a momentary, subjective experience of self, which may correspond to the reflexive state of self-consciousness introduced in the current essay. Gallagher (2000) wrote that the minimal self can be developed to a narrative self that is constituted with a past and a future in the various stories that we tell about ourselves. This self-referential nature of narrative self seems to correspond well to the reflexive stage of self-consciousness in the current essay by Butz. It is also noted that this development from the reflexive stage to the reflective one can be related to the transition from the pre-empirical level to the objective time level in Husserl’s theorem on immanent time (Husserl 1964), as will be illustrated later.

Now, I will propose possible neuronal mechanisms for extending the reflexive stage of self-consciousness to the reflective one in Butz’s terminologies. Although the apparently difficult part is how to objectify the subjective inner reality of sensory-motor experiences, this can be modeled by taking two different neuronal representation approaches: namely, those of local representation and of distributed representation. In the local representation approach, each distinct sensory-motor structure experienced can be embedded in its corresponding local forward model module through winner-take-all (WTA) type competitions with other modules (Wolpert & Kawato 1998; Tani & Nolfi 1998; see Figure 1a).

The competition proceeds with a gating mechanism associated with each module. If a particular forward model module is good at predicting the coming sensory flow while generating less error compared to others, the gate associated with this module tends to open more, while others do so less, in the WTA manner. The winning model is entitled to more learning and generation of more prediction outputs for the current inputs. As a result of this competitive learning, distinct sensory-motor primitives, in terms of forward models, are self-organized into corresponding local modules. After this learning, the original sen-

![Figure 1: A local representation scheme of the gated modular networks model is shown in (a). In the lower level each i-th forward model depicted by fi competes, using winner-take-all dynamics, to predict the next sensory-motor state sm{sub i}{sup t}+1, while the higher level forward model F predicts which gate will open in the next time step in GT+1. (b) shows a distributed representation scheme of the RNNPB, where multiple forward models, f1, ..., fm, are distributionally represented in a single RNN with the associated PB vector. The PB vector value is adapted such that the prediction error for the next sensory-motor state sm{sub t}+1 is minimized, while the higher level forward model F predicts the next PB vector value, PB{sub t}+1.](image-url)
sensory-motor flow is segmented into sequences of reusable primitives by the gate opening mechanism (Tani & Nolfi 1998). A higher level forward model is now introduced to the system (Tani & Nolfi 1998). The higher level forward model learns to predict the gate opening sequences by observing them. Thereafter, the original sensory-motor flow is reconstructed in terms of sequences of pre-acquired primitives. Our essential claim here is that subjective experiences of sensory-motor flow are objectified by referencing them with their corresponding module IDs which are manipulable at the higher level. It is noted that prediction error is an essential drive to articulating continuous sensory-motor flow into objectified primitives. In other words, subjective experience is segmented by momentary self-accompanying incoherence into a sequence of consciously retrievable events that constructs the narrative self. At this very moment, the objective time level might appear from the pre-empirical level (see more precise descriptions in Tani 2004).

A distributed representation scheme is now introduced where similar but more psychologically plausible explanations can be made (see Figure 1b). Tani and colleagues (Tani, Ito & Sugita 2004) have proposed a neural network model, the so-called “recurrent neural network” with parametric biases (RNNPB), that can learn multiple forward dynamics models in a distributed way within a single recurrent neural network (RNN). In this model, an RNN is associated with additional units, the so-called “parametric biases” (PB). The PB play the role of bifurcation parameters for the forward dynamics realized by the RNN. By modulating the values of the PB vector, the forward dynamics generates diverse dynamic patterns by going through successive bifurcations. The learning in RNNPB is considered as a process of determining an optimal synaptic weights matrix that embeds all the target dynamic patterns and a set of PB vectors specific to each of the target dynamic patterns. As the result of learning, a mapping between the PB vector and the dynamic patterns is self-organized. In the RNNPB, it is considered that each distinct sensory-motor structure is objectified by its corresponding PB vector value. If a higher level RNN is introduced in order to learn sequences of PB vector shifting, a corresponding switching of sensory-motor structures can be obtained at the lower level that seems to be analogous to the gate switching shown in the local representation scheme.

However, there is a distinct advantage to the generalization capability of the RNNPB, which originates from its distributed representation characteristics. In the mapping of PB, if the hamming distance between two PB vectors is short, dynamic patterns generated from these two PB vectors become similar. In other cases, they become different from each other. In this manner, the PB mapping can provide a continuous functional space with generalization, while the gating networks cannot attain such a generalization capability because their functional space is partitioned discretely by a finite set of local modular functions.

Such generalization characteristics have been demonstrated by an RNNPB-implemented humanoid robotics experiment in manipulating different shapes of objects (Nishide et al. 2008). As has been said in the current essay by Butz (§51), different objects entail different sensory-motor structures. Nishide et al. (2008) trained two types of mappings where one was a PB mapping to the motor trajectories of the robot arms and the other was from visual images of objects to the PB vector. As a result of simultaneous training of these two mappings, when the robot sees one of the trained objects, the visual mapping generates a corresponding PB vector, which turns out to generate the correct motor trajectory for manipulating the object. When the robot was asked to manipulate a novel object for which the visual feature is between two of the pre-trained objects, the motor trajectory was adequately generated as interpolation between two motor trajectories trained for these objects. This generalization capability for novel objects results from the fact that the objectified entities are still represented in the low-dimensional metric space of the PB. Furthermore, when the robot arm was guided by researchers to move using pre-trained motor patterns, the corresponding mental imagery of the visual object was generated because mapping from proprioception to vision through the PB is established by means of the inverse computation. This might be a possible implementation of Butz’s idea (§59) of bidirectional mapping between the dorsal processing, specialized for bodyspace encoding, and the ventral processing for object identification during tool use.

In the current commentary, two possible neuronal mechanisms have been proposed to account for the psychological pathways of the development of self-consciousness from its reflexive stage to the reflective one, as proposed by Butz. Although both the local representation scheme and the distributed one are shown to be capable of mapping from subjective sensory-motor experiences to objectified entities, the latter might provide a more psychologically-plausible mechanism because the objectified entities still remain in a metric space. Because these objectified entities that appear in the PB space are not like the arbitrary shapes of tokens (Harnad 1990) but preserve metricity, they could have inherently natural interfaces with the sensory-motor reality in the shared metric space.

This paper is full of stimulating and creative ideas. It posits that an anticipatory drive is what guides the development in the brain of a set of internal motor models, specifically a set of inverse and forward models. Through these models becoming increasingly complex, a conscious self develops. This is a simple and important thesis, if true. But is it? As my title suggests, it may be so for sportsmen, with their emphasis on ever more refined motor responses. However, those of a more cerebral nature may find themselves burdened by all those coupled internal motor models and not able to think as clearly as they would like. This is not to say that prediction isn’t a useful property to possess, both for finance (especially now) and in one’s general living patterns. But the question I wish to consider is: What sort of predictive model can lead to thinking?

There is a further difficulty with this paper: it promised an answer to “Why consciousness?” Consciousness is claimed to arise from the increasing plethora of internal
models in ever more complex environments. But even if consciousness does arise that way, what is its function? That is hidden inside the increasing complexity of these internal models.

My commentary starts by noting that there can be internal models both for motor acts (with good experimental supporting evidence) and for sensory attention (with less evidence, although the existence of an inverse model to generate attention movement control signals is strong and has been observed in the superior parietal cortex through numerous brain imaging experiments, such as those reported by Hopf et al. 2000). But these latter internal models have been completely ignored in the paper. Thus for the author to say (§98) that he “completely agrees with Taylor’s (2002) perspective” is to totally miss that perspective. The author has completely concentrated on motor control internal models, in line with the current fetish with embodiment. However we all know of the experience of being completely conscious even though we are not moving a muscle (or our eyes, in a paradigm using covert attention). The perspective of my paper in 2002 was that consciousness arose purely through a sensory attention control system, without any motor control internal models being involved; this same perspective is developed more fully in further papers (Taylor 2006, 2007 and earlier references contained therein).

Of course the motor and sensory attention control circuits must be suitably fused in the brain. This may not be trivial since there is evidence that they have crucial components in opposite hemispheres (Rushworth et al. 1997, 2001). Such fusion of sensory and motor attention has already been included in recent work, such as that on the mental simulation present in observational learning and beyond (Hartley et al. 2008; Hartley & Taylor 2008). However in no case has there been any need for an anticipatory drive to be used to get the fusion going or get any of the forward/inverse models up and running.

In my attention control approach, consciousness arises as a two-component set of activities in the brain: 1) Those coding for the stimuli being experienced, such as the smell and colour of a rose, the taste of the delicious glass of wine, and so on; 2) Activities relating to the owner of the experience of these stimuli representations. It is this latter which was mulled over in depth by philosophers of the school of Western phenomenology (Husserl, Sartre, Merleau-Ponty, Henry and so on, well-reviewed and updated by Zahavi 2006). As these thinkers pointed out (and as was described in detail in a number of my papers referred to above), without an owner there would be no experience, no consciousness. This is completely missing from the author’s discussion.

There is one (among many) feature of great importance in the nature of consciousness: that of “immunity to error through misidentification of the first person pronoun” (Shoemaker 1968). As Wittgenstein pointed out, if I tell you, “I am in pain,” you cannot ask me the question, “Are you sure it is you who is in pain?” I just am sure. I know it is I who is suffering the pain, not anyone else, such as you. It is this certainty of oneself (which may disintegrate in some forms of schizophrenia) that can be teased out from the attention–based model I proposed in the above references. The crucial component of this model was the extension of the attention control model to include a copy of the attention control signal, and also an associated forward model for rapid and early prediction of the next attended state.

I proposed that the experience of the owner is generated by that copy of the attention movement control signal. The copy was further proposed to prevent distractors getting in the way of awareness arising of any attended stimulus, so that awareness arises with certainty of the attended stimulus being the one desired and expected. Immunity to error about 1, acting as the sentry to the gate for access to awareness of content, has thus been attained.

Why, then, does consciousness exist? In the author’s approach, it would appear to be an epiphenomenon, arising through an accumulation of increasingly complex coupled internal models. In other words a bit of a miracle! So he does not come through on his “Why” in his title. On the other hand my “attention copy” model of consciousness has a very important function for consciousness. In internal motor models there is also good evidence for the existence of a copy of the motor control signal being used in a predictor (forward model) so as to allow for fast error correction. In the attention-based approach to consciousness that I advocate (the attention copy model), the existence of the attention copy signal allows both for fast error correction, mentioned above, as well as for speeding up access to the relevant working memory site of the attended stimulus input. So both components of consciousness—content and owner—function together to speed up the error-free access of the stimulus representation to reporting. There is consequence of this reportable stimulus representation throughout the higher reaches of the brain. Thus the “I” is a necessary “speeding-up” and error-correcting component for speeding stimulus representations into report mode, with clear survival value.

Besides these doubts about the neglect of sensory attention control systems and the existence of an “owner,” there is the more basic question: from whence comes this inherited anticipatory drive? It is not one of the primary drives of sex, hunger, thirst and so on. Does it have more of a secondary nature, like curiosity? That also does not seem likely. Indeed this anticipatory drive is a very complex one, needing the internal models to be created before anticipation or forward prediction can be achieved.

How does the anticipatory drive help to create the relevant internal models? These can be trained, without the drive, by use of purely unsupervised learning by STDP. What is added to that by the drive! Is there more activation in suitable neural regions by the drive, so speeding up learning? Recent models of observational learning fit experimental data on infant learning without the need for such a drive (Hartley et al. 2008; Hartley & Taylor 2008). So what is the specific experimental data that requires this drive?

As can be seen, I am sceptical of the existence of such an anticipatory drive, in the absence of hard evidence. Of course the same scepticism can be directed at my attention copy model approach to consciousness. However that has the immunity to error property in its favour, as well as experimental data of a very specific form from analysis of the attentional blink (fragopanagos, kockelkoren & Taylor 2005) and from an early (200 ms) signal in the temporal lobe (following a sharp signal in the parietal lobe some tens of milliseconds earlier), as observed by MEG in attention control tasks associated with the creation of the N2pc (Hopf et al. 2000).
Author’s Response

Martin V. Butz
University of Würzburg
<butz@psychologie.uni-wuerzburg.de>

Introduction

First of all, allow me to articulate my gratitude to all the colleagues that provided this very exciting and diverse feedback. Truly, each and every one has broadened my perspective on the topic and has also made me aware, once again, of how difficult it is – if not impossible – to state things with crystal clarity. In fact, I feel that several of the concerns raised were due to misunderstandings and although I would often even agree perfectly with the objections raised in the commentaries, I see the points raised not really as objections but as issues that should be integrated. Thus, my response in general tries to integrate rather than contrast, while obvious misunderstandings will be clarified.

To do so, I will now start with a clarification of the actual intentions of the original article, then proceed with an attempt to further clarify the terminology used, move on to further differentiations of different aspects of the anticipatory drive, consider different aspects of sensorimotor and sensory-dynamic structures, touch shortly on mirror neurons once again, and end with a discussion on the relation with several types of consciousness.

Target article intentions

Although I intended to propose that the anticipatory drive is one principle of consciousness, I never had the intention to propose answers to how and why there is consciousness. This is also the reason why the title states “How and why the brain lays the foundations for a conscious self” and not “...constructs a conscious self,” or similar. The article was intended to propose how brain structures emerge in which a conscious self may be embedded. The article only touches on the possible mechanisms (binding mechanisms, involved attention, etc.) of how the conscious self is actually embedded (cf. §§93ff) and I feel quite confident that it is simply not sufficiently well understood, as yet, how consciousness actually works.

Nonetheless, the article’s intention was to propose one of the fundamental mechanisms that leads to the construction of the media, that is, brain implementations of behavioral, perceptual, and further abstracted concepts, in which a conscious self can be embedded – or rather, upon which the mental activity that constitutes the conscious self may work. However, although I believe that the concept of an anticipatory drive has the potential to unify several different brain theoretical aspects, mechanisms, and representations, I do not believe that the anticipatory drive is the only mechanism that controls brain development and functionality – which was also touched upon in the target article when I emphasized embodiment (cf. §§8ff) as well as motivational drives such as hunger (cf. §26).

Moreover, I certainly did not want to claim that the anticipatory drive is a special capability of the human cognitive apparatus. In fact, I believe that implementations of the anticipatory drive lie at the heart of the development of any existing brain. In more complex life forms, however, the drive interacts with increasingly sophisticated bodies, already developed brain modules (in somewhat stage-wise phases of development), and complex social and cultural worlds.

Finally, I want to emphasize that it was not my intention to show or prove that anticipatory mechanisms (defined in cf. §70) take place in the brain. The evidence is simply overwhelming (cf. §2, §15ff) that brain mechanisms do lead to the encoding of operands of sensorimotor dynamics (and many others) and that brain operations on these operands to form representations of immediate and also further distant potential futures. It should be emphasized again, though, that the evidence is not that of a naive observer made from daily experience (Maturana, §2, §13, cf. also my discussion on the problem of an observer §12), but was made by careful and diverse psychological and neuroscientific experiments (behavioral and cognitive) and it was modeled by various computational approaches. If this is denied, then the argument would at least require a complete theory as to how these phenomena may come about with alternative, computationally specified mechanisms.

Terminology

Several commentaries hit the terminology problem and my inevitable imprecision in terminology. Particularly, there were elaborate concerns with the usage of the term “representation,” “code,” and “inner reality.”

What is “representation”?

In particular, Bettoni (§§2ff), but also von Glasersfeld (§4) and Schubotz (§7), have criticized my loose usage of the term “representation” in various contexts. Bettoni (§§4–5) puts forward several quotations by von Glasersfeld concerning the problem that representations are generally considered structures that are isomorphic to the original. The general understanding of such “represented” structures, however, may imply that the structures must be real in some form. While this concern might be strongly important for radical constructivists (is there a reality that goes beyond our bodily confines?), I do not feel the same concern. That is, I believe that it is not essential for my arguments whether the perceived reality exists independently from our perceptions or not. What is important, however, is which representations of perceived sensory and sensorimotor correlates form and are differentiated during learning and development. Moreover, I agree that I should have better distinguished which representations are implementations of operations and which are implementations of operands, to which operations can be applied (§10).

For clarification purposes and further elaborations on “representation,” I feel the need to clarify the highlighted formulations:

- Substituting “inner representations” with “mental constructs” (Bettoni §7) may trigger mental associations that are, in fact, slightly closer to the point since “representations” was meant in a rather broad sense that could also include, for example, motor control programs and implementations of dynamic processes in general (as put forward perfectly by Schubotz §§2–3).
- “The anticipatory drive leads to ... the generation of mental structures that refer to properties of the self and that distinguish the self from the other.” (cf. §4)
- “Moreover, the suitability of the inverse structures strongly depends on the particular implementations of state and goal concepts.” (cf. §24)
• “The motor cortex encodes (amongst many other things) body postures.” (cf. §40)
• “For more elaborate object concepts to emerge, more complex interactions with objects will be necessary.” (cf. §51)
• “…, the anticipatory drive as the basic learning mechanism that underlies brain restructuring has now created brain modules and mechanisms that include implementations of various concepts of the self.” (cf. §81)
 Certainly I would be interested in discussing these formulations further – as they never can be absolutely precise.

10 Another important point about “representation,” however, comes from a developmental perspective, too. The concept of object permanence only arises at rather advanced developmental stages (Langer et al. 2003; Piaget 1975). Thus, representations of items also emerge and structure themselves during development by the experience that things do usually not simply disappear, even if they are not perceived any longer. Thus, when talking about the presence of a squirrel (Glaserfeld §3), it may not only be the seeing of the squirrel but also the knowing of its existence, that is, the assumption of its usual (temporarily extended) permanence and activity in the world, even once it is out of sight.

What is “code”? 11 Somewhat similarly to “representation,” von Glasersfeld raises the concern that the terms “code” and “information” are used too loosely and without further specifications (§4). Von Glasersfeld puts forward that “code” means an item or list of items that are semiotically linked to something else, something to which they are not otherwise related (§5). Being a computer scientist, I think about codes in terms of structures that can be used to activate programs, that is, mechanisms, that execute the commands in the code. In this sense, codes are particularly linked to something by being an implementation of properties of this something else. For example, sensorimotor codes may specify how perceptual input changes when I move my body.

12 Von Glasersfeld (§6) particularly queries the following formulation (cf. §44): “Unlike sensory information sources, motor information activates predictive sensorimotor codes, which predict changes in body perception that are dependent on the executed motor commands.” Since this sentence was never meant to exclude the possibility that sensory information alone can also trigger sensorimotor codes (Schubotz §4), I should have better formulated this by stating, “Unlike sensory activities, motor activities directly activate predictive sensorimotor codes that invoke predictive representations of changes in body perception, dependent on the executed motor commands.”

13 In conclusion, von Glasersfeld requests specific neurobiological definitions of the terms “code” and “information.” This, however, is currently impossible since it is still completely unknown what exactly neurons encode and which algorithms are actually at work, as also pointed out by Schubotz (§3). From an anticipatory drive perspective, codes in the brain may be regarded as embodied knowledge about how future perceptions and internal body states (such as homeostatic states) may change. Activated codes, that is, information about the current state of affairs relevant to the body, consequently inherently co-activate potential future states of affairs. It should be remembered in general, though, that regardless of whether I have named them “codes,” “representations,” “information,” or similar, all of these are clearly confined to the experiential realm of the acting and observing agent (Bettoni §5, Glasersfeld §3).

What are “inner realities”? 14 A slightly different consideration requires my usage of the term “inner reality.” Stewart suggests that my stance must be consequently that of an “internalist” (§1). Here it seems we are falling into another interpretation trap. Maybe the right question to ask for clarification would be, “Where does the “inner” start?” Certainly, it is not restricted to the confines of the brain, but it starts with the body and also with the environment, with which the body interacts. Considering the comparison between leg activity versus walking and brain activity versus cognizing as an example (§3.4), leg activity is embedded into a very complex system with antagonistic muscles, tendons, bones, surfaces on which walking takes place, etc. As I have argued, brain activity is also embedded into an even more complex body system with particular body morphologies, genetically predisposed learning and activity patterns, hierarchies, and modularity. Thus, I want to emphasize that my stance is also neither “internalist” nor “externalist” (Stewart §5), but rather that of an “interactionist.” In fact, I would rephrase Stewart’s statement that “reality […] is co-constructed in the interaction between organism and environment” (§8) and state that our inner realities are pro-constructed both during and for the interaction with the environment. 15 Since inner realities are thus grounded in brain–body–environment interactions, they can never be totally autonomous from sensory input or the external world (Pezzulo & Castelfranchi §1) because they will always be embedded in structures whose primary focus lies in the control of body–environment interactions. However, during meditation it is clearly possible to detach the self from the present and current body awareness, but, nonetheless, as proposed, even these detached thoughts must ultimately originate from codes of sensorimotor interactions and dynamics. Thus, cognition is embodied into a particular body morphology, which not only determines particular sensorimotor patterns, but also purely sensory dynamic patterns, such as the smell and look of a rose (Taylor §5). In the same vein, I neglected the appreciation of “dynamics” in these inner realities, most likely because I pre-assumed that sensorimotor codes are inherently dynamic codes. However, it should be acknowledged again that perceived, purely sensory dynamics can also electively invoke (somewhat matching) dynamic sensorimotor structures (Schubotz §4).

16 Another important point put forward by Osvath (§3) and also, from a different perspective, by Rieger (§1.1f) is that inner realities do not necessarily match actual reality (whatever the latter might be). Osvath puts forward several indicators that constructed inner realities, such as beliefs about the future or confabulations about the self, are purposeful, rather than truthful – which is in accordance with an anticipatory drive at work. This “purposeful,” however, is of course very hard to prove since the actual real purpose, which drives the self and also the construction of inner realities, has too many facets (working on relaxing muscles or the mind, satisfying motivational needs (hunger, thirst, etc.), finding an acceptable place in society, maintaining a consistent inner reality, etc.). Rieger, on the other hand, points out that inner realities
can also be detrimental, which manifests itself, for example, in psychological disorders (§1). Feelings of helplessness may indeed stem from inappropriately tuned inner realities. In this respect, I perfectly agree that anticipation may not always be beneficial (Rieger §3; cf. §5 and also the recent review on benefits and possible drawbacks of anticipations in Butz & Pezzulo 2008). Still, I was pleased to learn that it has even been shown that inaccurate anticipations can actually lead to vicious cycles in behavioral patterns (Rieger §4), which also strengthens the point that the anticipatory drive is at work (§5).

The anticipatory drive revisited

Despite several attempts and a full section on the anticipatory drive (cf. §§21–29), I did not succeed in perfectly clarifying what the anticipatory drive exactly is, where it may be located in the brain, and where it comes from (Pezzulo & Castelfranchi §4; Swarup §3; Taylor §9). The term “drive” should not be too strongly associated with “sexual drive” or “hunger” or “thirst.” These drives I consider as distinct mechanisms, which play their important parts. The anticipatory drive, however, as Pezzulo & Castelfranchi suspect, is meant rather in a metaphorical sense (§4). The anticipatory drive refers to the driving force that controls brain structuring during development and learning (the main point of the paper), and it is also involved in guiding actual brain activity (a side point of the paper, which needs to be further elaborated on in the future). The target article admittedly uses the concept of an anticipatory drive in many forms; however, the tendency to form associative forward-inverse structures also seems to be ubiquitously present in the brain. Thus, while considering the “anticipatory drive” as the “breath of life” (Schubotz §7) was never my intention, I strongly believe that it is an important concept, with which the emergence of many structures and functions of the brain can be explained.

Pezzulo & Castelfranchi also suggest distinguishing between the mechanism, the function, and the adaptive advantage of the anticipatory drive. Although I wish to be able to do this in more precision, it remains a big challenge and would be beyond the capacity of this journal article. This is not only because of the current lack of knowledge in science but also because the anticipatory drive interacts in different brain modules with different pieces of sensory, motor, sensorimotor, and memory information structures and activities. In general, the mechanism biases learning towards the generation of suitable forward-inverse structures (operands) for efficient and flexible interaction with the environment. Moreover, it is part of the operation principle. In this case, the anticipatory drive can have various beneficial effects on behavior, which include increased stable, flexible, and adaptive behavioral control, interactions with objects and tools, as well as social interactions including communication (cf. §5). Thus, I had proposed that the anticipatory drive has definite positive effects on, if it does not principally direct, behavior, in which I include overt behavior, such as body control, but also covert mental behavior such as (re-) directing the focus of attention (as suggested by Taylor §8) or controlling cognitive processes during speech comprehension and generation (Neumann §2–6).

Maturana suggests that anticipatory mechanisms and the anticipatory drive stand in contrast with his theory on “structurally determined systems” (§5, §18 – the principle of the cosmos) that are operating “in dynamic structural coherence with the medium in its niche” (§18). However, Maturana puts forward neither any actual contrast nor any differentiations between anticipatory mechanisms and his nomenclature. I did not find any argument in his commentary that shows that there cannot be any anticipatory drive except for his direct statements (without evidence) against it. Seeing that control theory, too, shows that predictive control can be highly effective, I do not see any reason why organisms may not have evolved an anticipatory drive that realizes the maintenance of structural coherence by the support of anticipatory processes (and bear in mind the overwhelming evidence that this is actually happening).

Due to the various functions and various qualities of the mechanism, which depends on the types of inputs and outputs processed, I refrained from proposing actual algorithms that can realize the drive. Nonetheless, I am grateful that Tani suggests two recurrent neural network algorithms – one local dynamic gating algorithms of local experts (§7) and a more powerful distributed dynamic representation scheme, which is realized by recurrent neural networks with a parametric bias (RNNPB, §§6ff). Both may realize the emergence of the proposed object interaction codes and differentiate between different objects by implementing a type of anticipatory drive that enforces the distinction of different sensorimotor dynamics for the generation of accurate predictions. However, since RNNPBs may preserve the metricity in the dynamics of different object interaction patterns, RNNPBs may additionally offer a natural translation of dynamic patterns onto a lower-dimensional state space, as suggested by Tani (§11). Taylor suggests an associative learning algorithm through time, that is, spike-time dependent plasticity (STDP), which he contrasts with the anticipatory drive (§10), but which I would consider another potential implementation of a type of anticipatory drive. In fact in §23, I propose that the anticipatory drive biases learning towards the formation of “associative relations over time,” which STDP essentially realizes.

In sum, while I would not call the anticipatory drive an actual acuausal mechanism in the strong sense, I agree with Swarup (§10) that the details of the actual mechanisms in the brain that constitute the anticipatory drive still need to be properly understood and implemented on computers for modeling purposes. Certainly, highly potent implementation approaches can be found in RNNPBs as well as in STDP (the former using forms of back-propagation learning while the latter using purely associative learning). However, I hope that most readers will agree that the concept of an anticipatory drive persists as a handy concept (Swarup §11).

Sensorimotor, attentional, and sensory dynamics

I have to say that I was rather shocked when I realized that I had not cited Schubotz’s work in the original article (since I know it well and it fits very well) and I am grateful to her for pointing out her work. It is definitely an important point that actions can be generalized to events, types of actions, and types of dynamics (Schubotz §§2–3). I tried to hint at these issues when I detailed the importance of learning body control and particularly also sensorimotor (dynamic) forward models on how motor dynamics change sensory inputs (cf. §§35–38, §§43–46, §§48). Sensorimotor structures may sound like static, state-action-
effect structures, but they comprise many rather fluid, dynamic structures.

I also stated one of the fundamental reasons for learning sensorimotor (dynamic) models of the own body: “To be able to predict the usual sensory effects caused by our own body movements – and thus not to be continuously surprised when we move – a forward model of our own body is necessary,” (cf. §3). Thus, I perfectly agree that the main issue in order to realize goal-directed behavior is to first know what will when be where (Schubotz §1) – and I regret that I did not succeed in making this sufficiently explicit in the target article. In sum, encodings of sensorimotor dynamics are not exclusively active only when corresponding motor activity occurs, but they are predominantly shaped dependent on motor activity during learning and development.

While dynamic sensorimotor models are certainly structured by the anticipatory drive, I have admittedly neglected the importance of attention-dependent anticipatory models. Taylor suggests that I have actually totally missed his perspective and “completely concentrated on motor control internal models, in line with the current fetish with embodiment” (§3). Again, I would like to adhere to my integrative standpoint and would first like to point out again, as just discussed, that even purely sensory dynamic activities are inevitably linked to sensorimotor codes in premotor areas (see Schubotz §§2–3). Moreover, I would like to point out also that clearly all sensory experiences are embodied and so any attention processes that inevitably must work at least on some processed form of sensory information (if not sensorimotor) are also confined to the experiential realm and thus embodied.

More importantly, though, it has been shown that eye saccades are preceded by an attention shift to the location that the eye will focus on next (cf. §54 and also Swapp §6). Thus, attention and motor control appear to be strongly intertwined. To investigate this correlation further, it would be interesting to evaluate the ease of shifts in attention: if the anticipatory drive has shaped brain structures, shifts in attention should be more easily executable the more the shift is natural, that is, the more easily it can also be realized by types of body movements (for example, visually by an eye saccade). However, in our highly developed conceptualizing and symbolizing brains (mediated by language, writing, complex social interaction, etc.), attention shifts beyond the motor capabilities (taking different, much more abstracted routes) are certainly also possible. I tried to elaborate on such concepts in the target article in §69ff.

There is even further evidence that attention and perception are intertwined with motor control. For example, it was shown that target sizes (such as a softball or a hole in golf) are judged bigger, the stronger the current performance of the player (Witt et al. 2007; Witt & Proffitt 2005). Most recently, Witt & Proffitt (in press) showed that distances are also judged dependent on the current motor behavior available. For example, if participants had to reach a distant target location (more than one arm length away) and had a tool with which the location could be reached, the distance to the target was judged shorter than when the tool was not available. This was even the case when the tool was not held but the subjects were merely instructed to imagine using the tool to reach the target. Another recent study has shown that action preparations, such as the preparation of a power grasp or a precision grasp, bias selective attention in a change detection paradigm (Symes et al. 2008).

In sum, while attention-controlled dynamics in the brain are certainly a highly important aspect, which may actually also constitute aspects of self-consciousness (cf. §98), the anticipatory drive also causes the creation of the structures and mappings that link concepts and structures together simply because they can occur in succession and are correlated in some way. This is why even inanimate sensory dynamics can invoke correlated activations in the premotor cortex (Schubotz §2). Thus, I would be very happy if Taylor would agree that his theories on sensory attention may not be as far away from the proposed anticipatory drive after all.

Mirror neurons, empathy, and language

I suspected that due to the current hype over mirror neurons, my inclusion of mirror neurons in the construction of the structures for a conscious self would be criticized (Schubotz; Stewart §2). A couple of things have to be clarified in this respect.

First of all, I admit that I often tend to use personifications of mere correlates. For example, I state that “…mirror neurons distinguish between different behavioral intentions” (cf. §65; as pointed out by Schubotz §7). With this admittedly slightly sloppy use of language, I never wanted to implicate that the neurons are actual agents or are the source of control. Rather, they are embedded into brain activities and reveal particularly interesting differences in measured activities. In particular, it was shown that differences in mirror neuron activities correlate with differences in current behavioral intentions. It remains to be disputed in which cases more precision may be sacrificed for readability purposes.

Regardless of the precision dispute, I perfectly agree with the objection of Stewart (§3) stating that “What is done in current neuroscience is to correlate differences in mental activity with differences in brain activity […] the temptation is strong to believe that we are actually seeing mental activity going on. However, correlation is not cause; and it is important to resist the temptation.” The point is, though, that the detected correlates suggest that the neural activities in the (embodied) brain distinguish between the discussed concepts. This proves that explicit encodings of such concepts exist in the brain. The concept of the anticipatory drive can intuitively explain how such encodings may emerge in the first place. For example, representations of the intentions of others exist because it is vital to comprehend the behavior of others in order to be able to improve mutual interactions.

Furthermore, it is important that intentions of others are represented within the same neural structures that represent own behavior. This, again, was pointed out perfectly by Schubotz (§5), stating that mirror neurons are involved in predicting changes that are the result of own motor activity – so that we are, for example, not surprised when we move our own arm. However, this was the whole point of discussing mirror neurons in the first place: Before introducing mirror neurons, I pointed out the importance of sensorimotor self representations, which are necessary to achieve behavioral competence (cf. §§35ff). Since neural correlates of (usually intentional) interpretations of the behavior of others do recruit such sensorimotor self...
representations – then becoming mirror neurons that represent both types of (intentional) behavior of the self, and similar types of observed behavior of others – it becomes necessary to develop representations that allow a distinction to be made between mirror activities that occur due to own behavior and similar activities that are due to the observed behavior of others (cf. §§63ff).

Admittedly then, it is still not clear to what extent mirror neurons per se are necessary to be able to experience empathy, or rather, to be empathetic (Schubotz §6). However, there are several lines of research that support this claim (cf. §79). Moreover, even if no single neurons can ever be identified that distinguish between (that is, whose activity patterns correlate with) different emotional behaviors of others, we know that we do empathize (at least sometimes). Thus, there must be sorts of activities in the brain that associate observed emotional patterns of others with own emotional capabilities. This alone proves the point in question and requires, consequently (due to the anticipatory drive), that the emotional self needs to be distinguished from the observed emotional other in some way.

I am more than pleased that the only commentary on the computational language part of my argument basically agrees with it and, even more so, offers a theory that supports the argument from the computational linguistics side (cf. Neumann). I would like to highlight a couple of issues that Neumann points out in his commentary, nonetheless: (1) The presence of forward-inverse processing structures in the language facility improves communication bidirectionally – for phrasing own utterances and for comprehension – while using the principle of item and grammar sharing (§§2–7). In fact I believe that such structural sharing forward-inverse representations may be the key to flexible and adaptive behavioral and attentional decision making and control. (2) Redundancies or alternatives (inherent degrees of freedom) during language parsing and generation allow proper language adaptation dependent on social factors (§9), and parsing and generation are also mutually exploited to support the other (§5). That is, the better communicators we are, the more we (a) consider and adapt a mental model of the partner in a communication and (b) use this model to constrain the inherent degrees of freedom in order to improve mutual understanding during communication (during language parsing and generation). (3) Also, the distinction between blind preferences, which stream behavior on a stereotypic path, and intelligent control strategies, which guide goal-oriented behavior (§10), is certainly not only present in language, but also in other behavioral patterns. This has been, for example, suggested by Möller and Schenck (2008), who use forward simulations for categorization purposes and inverse control models to stream long-term predictions. (4) The symbol grounding problem, that is, neural symbolization, remains the biggest challenge (§11). Here, I believe that sensorimotor structural grounding can be expected to be most fruitful (cf. §76). In fact, this grounding may actually lead to the natural emergence of a language grammar. If this could be verified, then it would actually be proven that there is no abstract “universal grammar” but that universal grammatical properties only exist due to the embodiment of language.

Grounding symbols on experienced sensorimotor flow and bidirectional parsing-generation mechanisms is, from my perspective, actually in coherence with Maturana’s statement that “objects, entities, notions, ideas, concepts etc. arise as coordinations of coordinations of doings” (§22). Grounding words on the available dynamic sensorimotor representations essentially grounds concepts of words, objects, etc. on coordination codes, which are sensorimotor codes. However, Maturana does not put forward any developmental pressures (such as the proposed anticipatory drive) that may lead to the formation of such structures – especially also with respect to the formation of “special configurations of inner feelings” (§25). The further elaborations on types of reflexive and reflective self consciousness below may help to differentiate these special configurations of inner feelings more conceptually.

Consciousness

I think it should have become clear that I did not make claims about how consciousness works but rather which mechanisms may develop the media in which consciousness is embedded. Thus, most of the following points of discussion are further thoughts on aspects of consciousness.

The reflexive self and consciousness

Osvath makes the case for the phenomenon that there are perceptions that we do not become conscious of (§6). For example, he points out that there are blind sight subjects, who perceive stimuli for action but do not have conscious access to them. They can, for example, directly insert a letter into a letter box in front of them although they are not able to report the orientation of the slot. This suggests that there are independent systems for conscious sensation and unconscious behaviorally-relevant perception (§§7–8). Other studies have also shown that there are differences in, for example, weight estimates between behavioral components and conscious weight judgments using the size-weight illusion as their paradigm (Flanagan & Beltzner 2000): while grasping behavior adapts appropriately to weight knowledge, weight judgments stick to the size-weight illusion.

On the other hand, there are many studies that suggest that consciousness is somewhat fooled by behaviorally-relevant clues. As already discussed above, it was shown that the intention, or even only the imagination of using a reaching tool, leads to shorter distance judgments compared to if tool use was neither intended nor imagined (Witt, Profitt & Epstein 2005; Witt & Profitt, in press). Also, it has been shown that attention can be biased by behavioral intentions: dependent on the intention to execute a precision or a power grasp, changes in smaller or larger objects are better detected, respectively (Symes et al. 2008). Further studies in this direction will be necessary to disentangle the causality in the observed influences and the exact type of influence. Nonetheless, the experiments strongly suggest that conscious sensations can be influenced by behavior intentions.

The frame problem

While none of the commentaries mentions the frame problem explicitly, several discuss how many representations are parts of consciousness. Stewart talks about contextual conditions and asks about the location of consciousness. He proposes that the location is nebulous because it is distributed not only in the brain but also in the body and the environment interacted with (§§6–7). Rieger distinguishes between the strength of the anticipatory drive and the content of anticipation.
as key factors for the construction of the self (§1, §6). Osvath emphasizes the importance of the capability to detach sensations from current perceptions in order to develop a sensing self (§3). Moreover, he asks if the sensing self may mainly be an adaptation for anticipation (§4).

In all these considerations, the frame problem comes into play. That is, how many and which neural representations are activated by the sensing self? And when accepting that most of these representations are dynamic sensorimotor (in various abstracted forms), then it also needs to be considered how far the sensing self will look into the future. In this case, the confidence in predictions must have a strong influence. It has been shown that confidence estimates do play an important role when multiple sources of information are combined in the brain (cf. §50). Moreover, it is likely that the feeling of being in control is an important aspect of self consciousness. Rieger points out that a perceived absence of control over the future may lead to depression (§2). Thus, it appears that an important part of the sensing self is the control of which possible futures are pre-activated and considered for guiding behavior. In retrospect, it becomes important which potential (controlled) futures are actually imaginable.

Both points lead back to the available anticipatory representations and the anticipatory drive plus attention (Taylor §3), which control the activity flow within the representational structures. Taylor poses the problem of how it is that we ourselves are always (if things do not go wrong) and inevitably the owner of our conscious experiences (§§5–6). With respect to his attention control system, he proposes that a copy of the attention control signal, which allows for rapid and early predictions of the next attended states (§6), may generate the experience of the owner (§7). Again, I wholeheartedly agree with this description and would like to emphasize that I pointed out that the anticipatory drive has positive influences on attention, including filtering and predictive attention (cf. §5 and §30; see also discussion above).

Reflective self-consciousness

Reflective self-consciousness may be termed “coordinations of doings that involve the distinction of the doer of the doings as the observer of the doings being done” (Matuura §27). This distinction was already put forward by Kant (cf. my §82). The target article discussed how distinctions of the inner self such as the observing self and the observed self may be possible in our brain-body-environment coupling self-systems (cf. §§82ff).

I agree with Osvath that in order to realize such reflective stages of self-consciousness, it seems particularly important that the sensing self is able to detach itself from current sensations. Language might be very helpful in this respect as well as the representations that distinguish the self from other environments discussed in the target article. The narrative self (Tani §5) may play an important role in considering future states and imagining future possible interactions within the environment as well as remembering past episodes.

Interestingly, Tani takes this thought one step further and discusses notions of consciousness awareness. While in coherent behavioral phases everything goes as planned almost automatically, once things go wrong, surprise mechanisms kick in and the system becomes consciously aware of the current error (§5). The notion of surprise, which depends on differences between predicted and actual sensory feedback, is certainly of high importance – also as a means to draw attention (again confirming the strong correlations between anticipations and attention). While these notions of surprise and unsatisfied anticipations may be an important mechanism that invokes types of conscious experience, conscious awareness is probably not only dependent on the notion of surprise. As Taylor points out, self consciousness can be active even when not moving any muscles. Thus, there are further states of consciousness that should be distinguished.

Conclusion

Many of my responses have tried to clarify which type of representation, code, activity, or even consciousness I was referring to in the target article. As offered by Bettoni (§14), it might in fact be fruitful to look through the target article in even further detail and rephrase ambiguous or even misleading passages. However, it seems to me that part of the problem lies in the available vocabulary. Discussions on consciousness may need to differentiate types and states of consciousness and give each of the identified types particular names. I suggest utilizing the prerequisites in structures (operands) and mechanisms (operations) that are necessary to invoke particular types of consciousness as a distinguishing criterion (such as surprise mechanisms that can lead to types of conscious awareness). In doing so, I suspect that the anticipatory drive and particularly the consequently emerging anticipatory structures and mechanisms will play an important role and hope that the target article can serve as the basis for such an endeavor.

Acknowledgments

I would like to thank Alexander Rieger for his immensely careful editing, coordination, and communication during the production of the target article and the response. Moreover, I would like to thank again all the commentary writers and reviewers for their contributions. I hope I managed to consider most of the raised points to an accurate and satisfactory degree. Last but not least, I would like to thank all my colleagues at the Department of Cognitive Psychology – especially for suggesting additional relevant literature as well as for their comments on earlier drafts of the target article. This work was supported by the Emmy Noether program of the German research foundation (grant BU1335/3-1).
Collected References

internal time consciousness. (Translated by James S. Churchill). Indiana University Press, Bloomington IN. German original published in 1928.

of intelligence. MIT Press, Cambridge MA.

